
TitanX Farm Security Review
Pashov Audit Group

Conducted by: Said, ast3ros, pontifex
September 28th - October 7th

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About TitanX Farm
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. High Findings
[H-01] Loss of fees due to rounding down

8.2. Medium Findings
[M-01] TWAP price manipulation

8.3. Low Findings
[L-01] Potential out of gas
[L-02] Potential division by zero
[L-03] Detailed information about a specific farm can be
outdated
[L-04] Initial last reward time can be changed even if
farming is not started
[L-05] Permit signatures cannot be canceled before
deadlines
[L-06] Not checking if the value is 0
[L-07] Unnecessary query the TWAP price
[L-08] Fees may be incorrectly handled
[L-09] Lack of min toBuy and toBurn for buyAndBurn

1

2

2

2

2

3

3
3
4

4

5

7

7

7

9

9

12

12

12

13

14

15

16

18

20

21

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the dragon-software-devs/TitanX-Farms
repository was done by Pashov Audit Group, with a focus on the security aspects
of the application's smart contracts implementation.

4. About TitanX Farm
The TitanX Farm Protocol is enables users to provide liquidity on UniswapV3 and
earn rewards in TINC tokens, while implementing a buy-and-burn mechanism to
support TINC's value.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - 181af1ffd7a8bcfe57c0bdeadccabf1b709619a9

fixes review commit hash - e7d6476452e2aa4b937f292da906c65e427e0962

Scope

The following smart contracts were in scope of the audit:

LiquidityAmounts

Oracle

PathDecoder

PoolAddress

PositionKey

PositionValue

TickMath

Constants

Farms

InputTokens

FarmKeeper

TINC

UniversalBuyAndBurn

4

https://github.com/dragon-software-devs/TitanX-Farms/tree/181af1ffd7a8bcfe57c0bdeadccabf1b709619a9
https://github.com/dragon-software-devs/TitanX-Farms/tree/e7d6476452e2aa4b937f292da906c65e427e0962

7. Executive Summary
Over the course of the security review, Said, ast3ros, pontifex engaged with TitanX
to review TitanX Farm. In this period of time a total of 11 issues were uncovered.

Protocol Summary
Protocol Name TitanX Farm

Repository https://github.com/dragon-software-devs/TitanX-Farms

Date September 28th - October 7th

Protocol Type Farming protocol

Findings Count
Severity Amount

High 1

Medium 1

Low 9

Total Findings 11

5

Summary of Findings
ID Title Severity Status

[H-01] Loss of fees due to rounding down High Resolved

[M-01] TWAP price manipulation Medium Acknowledged

[L-01] Potential out of gas Low Acknowledged

[L-02] Potential division by zero Low Resolved

[L-03] Detailed information about a specific
farm can be outdated Low Resolved

[L-04] Initial last reward time can be
changed even if farming is not started Low Resolved

[L-05] Permit signatures cannot be canceled
before deadlines Low Resolved

[L-06] Not checking if the value is 0 Low Resolved

[L-07] Unnecessary query the TWAP price Low Resolved

[L-08] Fees may be incorrectly handled Low Resolved

[L-09] Lack of min toBuy and toBurn for
buyAndBurn Low Acknowledged

6

8. Findings

8.1. High Findings

[H-01] Loss of fees due to rounding down

Severity
Impact: High

Likelihood: Medium

Description
The FarmKeeper contract uses a SCALE_FACTOR of 1e12 when accumulating
fees per share of liquidity. For tokens with low decimals (e.g. USDC with 6
decimals) and large liquidity amounts, this can lead to precision loss and
rounding down to 0, resulting in permanent loss of fees for users.

Let's consider a token with 6 decimals such as USDC.

The issue occurs because:

amount0/amount1 can be as low as 1 unit (e.g. 1e6 for USDC)
liquidity is a uint128, so can be up to ~3.4e38
SCALE_FACTOR is only 1e12

This means the calculation can result in: 1e6 * 1e12 / 1e38 = 1e-20 which
rounds down to 0 due to integer division.

We can see that if the token is in 6 decimals, with the liquidity amount > 1e18
(doesn't need to be in e38), the incremental fee per share for the token is
rounded down to 0.

Combined with the updateFarm , it can be called by anyone to collect the fees.
Malicious actors can exploit this by calling updateFarm frequently to force fee
collection when amounts are small.

7

function _collectFees(Farm storage farm) private {

 // Handle token0
 if (isInputToken0) {
 ...
 } else {
 farm.accFeePerShareForToken0 += Math.mulDiv
 (amount0, Constants.SCALE_FACTOR, liquidity);
 }

 // Handle token1
 if (isInputToken1) {
 ...
 } else {
 farm.accFeePerShareForToken1 += Math.mulDiv
 (amount1, Constants.SCALE_FACTOR, liquidity);
 }
 }

The impact is fees collected when liquidity is high will be permanently lost
and unclaimable by users.

Recommendations
Increase the SCALE_FACTOR value to 18 to prevent the calculation from
rounding down to 0.

8

8.2. Medium Findings

[M-01] TWAP price manipulation

Severity
Impact: High

Likelihood: Low

Description
The _getTwaPrice function in FarmKeeper and getQuote function in
UniversalBuyAndBurn are vulnerable to price manipulation in Uniswap V3
pools with low observation cardinality. This vulnerability can lead to
inaccurate price calculations, potentially resulting in unfair token swaps or
liquidity provisions.

When getting the twap price to prevent slippage in liquidity providing and
swapping, the _getTwaPrice and getQuote functions fallback to the oldest
observation if the requested time window is greater than the available price
history.

It's a problem because it doesn't consider the pool cardinality. In newly created
pools with cardinality initialized to 1, the oldest observation can be
manipulated to be the current block.timestamp , setting the TWAP price to the
current (potentially manipulated) price. Because in uniswap v3 pool, an oracle
observation is written by the first swap or liquidity provision in the block. Let's
say before the UniversalBuyAndBurn contract performs the swap, a malicious
actor front-runs and swaps to manipulate the price because the cardinality is 1,
and the oldest observation is 0.

Another consequence is that the oldestObservation can be equal to
cardianility * 12 seconds (time per block) if liquidity changes each
block. It means that the TWAP period can be shorter than intended if
oldestObservation < secondsAgo , potentially increasing slippage risk.

9

function _getTwaPrice(address id, uint32 priceTwa) private view returns
 (uint160 slotPrice, uint160 twaPrice) {
 ...
 // Default TWA price to slot
 twaPrice = slotPrice;

 uint32 secondsAgo = uint32(priceTwa * 60);
 uint32 oldestObservation = 0;

 // Load oldest observation if cardinality greater than zero
 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(id);

 // Limit to oldest observation (fallback)
 if (oldestObservation < secondsAgo) {
 secondsAgo = oldestObservation; // @audit fallback to oldest observation
 }
 ...
 }

function getQuote(
 address inputTokenAddress,
 address outputTokenAddress,
 uint24 fee,
 uint256 twap,
 uint256 inputTokenAmount
) public view returns (uint256 quote, uint32 secondsAgo) {
 ...
 secondsAgo = uint32(twap * 60);
 uint32 oldestObservation = 0;

 // Load oldest observation if cardinality greather than zero
 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo
 (poolAddress);

 // Limit to oldest observation
 if (oldestObservation < secondsAgo) {
 secondsAgo = oldestObservation; // @audit fallback to oldest observation
 }

 // If TWAP is enabled and price history exists, consult oracle
 if (secondsAgo > 0) {
 // Consult the Oracle Library for TWAP
 (int24 arithmeticMeanTick,) = OracleLibrary.consult
 (poolAddress, secondsAgo);

 // Convert tick to sqrtPriceX96
 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);
 }
 ...
 }

Recommendations
It's recommended to either:

10

Revert if oldestObservation < secondsAgo to ensure the full intended
TWAP period is used.
Require a minimum cardinality (e.g., 10) for pools to be eligible for farming
or buy-and-burn operations. Reference: https://docs-v1.euler.finance/euler-
protocol/eulers-default-parameters#uniswap-observation-cardinality

11

8.3. Low Findings

[L-01] Potential out of gas
The massUpdateFarms function iterates over all farms and updates them. This
presents a potential risk of reverting due to out-of-gas errors if the number of
farms becomes very large. If the function reverts when collectFees is set to
false, key functionalities such as enableFarm and setAllocation could be
blocked, as they rely on massUpdateFarms .

Adding farms to the _farms array is restricted to admin, and when
collectFees is set to false , each iteration costs only about 1300 gas. This
makes the likelihood of an out-of-gas error occurring very low.

However, the admin should be mindful of this potential issue and consider
implementing solutions such as removing inactive farms when they're no
longer needed.

function massUpdateFarms(bool collectFees) public nonReentrant {
 uint256 length = _farms.length();

 // Iterate all farms and update them
 for (uint256 idx = 0; idx < length; idx++) {
 Farm storage farm = _farms.at(idx);
 _updateFarm
 //(farm, collectFees); // @audit Potential out of gas if the number of farms is
 }
 }

[L-02] Potential division by zero
In the enableFarm function, the params.allocPoints is validated to be less
than MAX_ALLOCATION_POINTS , but there's no check to ensure
totalAllocPoints remains above zero after adding a new farm. This could
theoretically lead to a division by zero error in the _updateFarm function when
calculating rewards, if totalAllocPoints somehow becomes zero and the
farm has non-zero liquidity.

12

function enableFarm(AddFarmParams calldata params) external restricted {
 ...
 _validateAllocPoints
 //(params.allocPoints); // @audit only verify that allocPoints is not greater than
 ...
 }

function _updateFarm(Farm storage farm, bool collectFees) private {
 ...
 uint256 incentiveTokenReward = Math.mulDiv
 //(// @audit Potential division by zero if totalAllocPoints is 0
 timeMultiplier * Constants.INCENTIVE_TOKEN_PER_SECOND,
 farm.allocPoints,
 totalAllocPoints
);
 ...
 }

It's recommended to add a check to ensure totalAllocPoints will be greater
than zero after adding the new farm in the enableFarm function.

function enableFarm(AddFarmParams calldata params) external restricted {
 // ...
 _validateAllocPoints(params.allocPoints);
+ require
+ (totalAllocPoints + params.allocPoints > 0, "Total allocation points must be greater
 // ...
 totalAllocPoints += params.allocPoints;
}

[L-03] Detailed information about a specific
farm can be outdated

The farmView function can return outdated information because it contains
storage variables whose values depend on the time period since the last update
and does not include pending pool fees. Consider implementing a view
functionality that returns actual information similar to the userView function.

13

function farmView(address id) public view returns (FarmView memory) {
 if (!_farms.contains(id)) revert InvalidFarmId();

 Farm storage farm = _farms.get(id);

 (uint160 slotPrice,) = _getTwaPrice(farm.id, 0);
 (
 uint256balanceToken0,
 uint256balanceToken1
) = LiquidityAmounts.getAmountsForLiquidity(
 slotPrice,
 TickMath.getSqrtRatioAtTick(Constants.MIN_TICK),
 TickMath.getSqrtRatioAtTick(Constants.MAX_TICK),
 farm.lp.liquidity
);

 return
 FarmView({
 id: farm.id,
 poolKey: farm.poolKey,
 lp: farm.lp,
 allocPoints: farm.allocPoints,
 lastRewardTime: farm.lastRewardTime,
>> accIncentiveTokenPerShare: farm.accIncentiveTokenPerShare,
>> accFeePerShareForToken0: farm.accFeePerShareForToken0,
>> accFeePerShareForToken1: farm.accFeePerShareForToken1,
>> protocolFee: farm.protocolFee,
 priceTwa: farm.priceTwa,
 slippage: farm.slippage,
 balanceToken0: balanceToken0,
 balanceToken1: balanceToken1
 });
 }

[L-04] Initial last reward time can be
changed even if farming is not started

The initial value of the farm.lastRewardTime variable can be set to startTime
and then changed to block.timestamp even if block.timestamp < startTime
by the _updateFarm function. Consider not changing farm.lastRewardTime to
block.timestamp value when it is less than startTime .

14

function enableFarm(AddFarmParams calldata params) external restricted {
 PoolAddress.PoolKey memory poolKey = PoolAddress.getPoolKey
 (params.tokenA, params.tokenB, params.fee);

 // Compute pool address to check for duplicates
 address id = PoolAddress.computeAddress(Constants.FACTORY, poolKey);

 // Check for duplicates
 if (_farms.contains(id)) revert DuplicatedFarm();

 _validateAllocPoints(params.allocPoints);
 _validatePriceTwa(params.priceTwa);
 _validateSlippage(params.slippage);
 _validateProtocolFee(params.protocolFee);

 // Update all farms but do not collect fees as only
 // the incentive token allocations are affected by enabling a new farm
>> massUpdateFarms(false);

 // Append new farm
 _farms.add(
 Farm({
 id: id,
 poolKey: poolKey,
 lp: LP({tokenId: 0, liquidity: 0}),
 allocPoints: params.allocPoints,
>>
 lastRewardTime: block.timestamp > startTime ? block.timestamp : startTime,
 accIncentiveTokenPerShare: 0,
 accFeePerShareForToken0: 0,
 accFeePerShareForToken1: 0,
 protocolFee: params.protocolFee,
 priceTwa: params.priceTwa,
 slippage: params.slippage
 })
);

 totalAllocPoints += params.allocPoints;
 emit FarmEnabled(id, params);
 }
<...>
 function massUpdateFarms(bool collectFees) public nonReentrant {
 uint256 length = _farms.length();

 // Iterate all farms and update them
 for (uint256 idx = 0; idx < length; idx++) {
 Farm storage farm = _farms.at(idx);
>> _updateFarm(farm, collectFees);
 }
 }
<...>
 function _updateFarm(Farm storage farm, bool collectFees) private {
 // Total liquidity
 uint256 liquidity = farm.lp.liquidity;
 if (liquidity == 0) {
>> farm.lastRewardTime = block.timestamp;
 return;
 }

[L-05] Permit signatures cannot be canceled
before deadlines

15

TINC permit signature offers the signer the option to create an EIP-712
signature. After signing this signature, a signer might want to cancel it, but will
not be able to do so. This is because the contract is based on OpenZeppelin's
ERC20Permit.sol in which the function to increase nonce does not exist and
the _useNonce function within Nonces is marked internal.

Consider introducing a public function that signers can directly use to consume
their nonce, thereby canceling the signatures.

function useNonce() external returns (uint256) {
 return _useNonce(msg.sender);
 }

[L-06] Not checking if the value is 0
When _collectFees is triggered and the collected fees are 0, and the tokens
are the input token inside buyAndBurn , it still triggers _safeTransferToken
with providing 0 value.

16

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.0.2/contracts/utils/Nonces.sol#L28-L35

function _collectFees(Farm storage farm) private {
 // Cache State Variables
 uint256 liquidity = farm.lp.liquidity;
 INonfungiblePositionManager manager = INonfungiblePositionManager
 (Constants.NON_FUNGIBLE_POSITION_MANAGER);

 // Collect the maximum amount possible of both tokens

 farm.lp.tokenId,
 address(this),
 type(uint128).max,
 type(uint128).max
);
 (uint256 amount0, uint256 amount1) = manager.collect(params);

 // Identify tokens which are accepted as input for buy and burn
 bool isInputToken0 = buyAndBurn.isInputToken(farm.poolKey.token0);
 bool isInputToken1 = buyAndBurn.isInputToken(farm.poolKey.token1);

 // Handle token0
 if (isInputToken0) {
 uint256 protocolFee = 0;

 if (farm.protocolFee > 0) {
 protocolFee = Math.mulDiv(amount0, farm.protocolFee, Constants.BASIS);
 protocolFees[farm.poolKey.token0] += protocolFee;
 }

 // Send core tokens to the buy and burn contract
>>> _safeTransferToken(farm.poolKey.token0, address
 (buyAndBurn), amount0 - protocolFee);
 } else {
 farm.accFeePerShareForToken0 += Math.mulDiv
 (amount0, Constants.SCALE_FACTOR, liquidity);
 }

 // Handle token1
 if (isInputToken1) {
 uint256 protocolFee = 0;

 if (farm.protocolFee > 0) {
 protocolFee = Math.mulDiv(amount1, farm.protocolFee, Constants.BASIS);
 protocolFees[farm.poolKey.token1] += protocolFee;
 }

 // Send core tokens to the buy and burn contract
>>> _safeTransferToken(farm.poolKey.token1, address
 (buyAndBurn), amount1 - protocolFee);
 } else {
 farm.accFeePerShareForToken1 += Math.mulDiv
 (amount1, Constants.SCALE_FACTOR, liquidity);
 }
 }

If the tokens revert on a 0 transfer value, the operation could revert and cause
operations that depend on _collectFees to always revert.

Consider skipping the fee calculation and transfers when the collected amounts
are 0.

17

[L-07] Unnecessary query the TWAP price
when getAmountsForLiquidity is called, it will call
_getDesiredAmountsForLiquidity to get amount0 and amount1 .

function getAmountsForLiquidity(
 address id,
 uint128 liquidity
) external view returns
 (address token0, address token1, uint256 amount0, uint256 amount1) {
 if (!_farms.contains(id)) revert InvalidFarmId();

 Farm storage farm = _farms.get(id);
>>> (amount0, amount1, ,) = _getDesiredAmountsForLiquidity(farm, liquidity);

 token0 = farm.poolKey.token0;
 token1 = farm.poolKey.token1;
 }

Inside _getDesiredAmountsForLiquidity , it retrieves the slot0 price and
TWAP price, then calculates the amount0/amount1 based on those prices.
However, getAmountsForLiquidity only requires amounts calculated using
the slot0 price.

18

function _getDesiredAmountsForLiquidity(
 Farm storage farm,
 uint128 liquidity
) private view returns (
 uint256desiredAmount0,
 uint256desiredAmount1,
 uint256minAmount0,
 uint256minAmount1
) private view returns
 (uint256 desiredAmount0, uint256 desiredAmount1, uint256 minAmount0, uint256 minAm
 (uint160 slotPrice, uint160 twaPrice) = _getTwaPrice
 (farm.id, farm.priceTwa);
 // Calculate desired amounts based on current slot price
 (desiredAmount0, desiredAmount1) = LiquidityAmounts.getAmountsForLiquidity(
 slotPrice,
 TickMath.getSqrtRatioAtTick(Constants.MIN_TICK),
 TickMath.getSqrtRatioAtTick(Constants.MAX_TICK),
 liquidity
);

 // Calculate minimal amounts based on TWA price for slippage protection
 (minAmount0, minAmount1) = LiquidityAmounts.getAmountsForLiquidity(
 twaPrice,
 TickMath.getSqrtRatioAtTick(Constants.MIN_TICK),
 TickMath.getSqrtRatioAtTick(Constants.MAX_TICK),
 liquidity
);

 // Apply slippage
 minAmount0 = (minAmount0 *
 (Constants.BASIS - farm.slippage)) / Constants.BASIS;
 minAmount1 = (minAmount1 *
 (Constants.BASIS - farm.slippage)) / Constants.BASIS;
 }

Consider to modify getAmountsForLiquidity to the following, so it doesn't not
necessarily query TWAP price :

function getAmountsForLiquidity(
 address id,
 uint128 liquidity
) external view returns
 (address token0, address token1, uint256 amount0, uint256 amount1) {
 if (!_farms.contains(id)) revert InvalidFarmId();

- Farm storage farm = _farms.get(id);
- (amount0, amount1, ,) = _getDesiredAmountsForLiquidity(farm, liquidity);
+ (uint160 slotPrice,) = _getTwaPrice(id, 0);
+ (amount0, amount1) = LiquidityAmounts.getAmountsForLiquidity(
+ slotPrice,
+ TickMath.getSqrtRatioAtTick(Constants.MIN_TICK),
+ TickMath.getSqrtRatioAtTick(Constants.MAX_TICK),
+ liquidity
+);

 token0 = farm.poolKey.token0;
 token1 = farm.poolKey.token1;
 }

A similar scenario also occurs inside getLiquidityForAmount . Update
getLiquidityForAmount as follows:

19

function getLiquidityForAmount(
 address id,
 address token,
 uint256 amount
) external view returns (
 addresstoken0,
 addresstoken1,
 uint128liquidity,
 uint256amount0,
 uint256amount1
) external view returns
 (address token0, address token1, uint128 liquidity, uint256 amount0, uint256 amoun
 if (!_farms.contains(id)) revert InvalidFarmId();

 Farm storage farm = _farms.get(id);
 token0 = farm.poolKey.token0;
 token1 = farm.poolKey.token1;

 // Get prices
- (uint160 slotPrice,) = _getTwaPrice(farm.id, farm.priceTwa);
+ (uint160 slotPrice,) = _getTwaPrice(farm.id, 0);
 uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(Constants.MIN_TICK);
 uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(Constants.MAX_TICK);

 if (token == token0) {
 liquidity = LiquidityAmounts.getLiquidityForAmount0
 (slotPrice, sqrtRatioBX96, amount);
 } else if (token == token1) {
 liquidity = LiquidityAmounts.getLiquidityForAmount1
 (sqrtRatioAX96, slotPrice, amount);
 } else {
 revert InvalidTokenId();
 }

 // Calculate amounts based on the slot price
 (amount0, amount1) = LiquidityAmounts.getAmountsForLiquidity(
 slotPrice,
 TickMath.getSqrtRatioAtTick(Constants.MIN_TICK),
 TickMath.getSqrtRatioAtTick(Constants.MAX_TICK),
 liquidity
);
 }

[L-08] Fees may be incorrectly handled
The setDisabled function in the UniversalBuyAndBurn contract allows
toggling whether an input token is considered active for the buy and burn
mechanism. However, this function does not trigger fee collection in the
FarmKeeper contract before changing the disabled state. This can lead to
incorrect fee handling in the following scenarios:

20

When disabling a previously enabled token:

Accumulated fees since the last collection up to the disabling time are
not sent to the BuyAndBurn contract.
Protocol fees are undercalculated for this period.

When enabling a previously disabled token:

Accumulated fees during the disabled period are suddenly sent to the
BuyAndBurn contract.
Protocol fees are overcalculated, including fees from the disabled
period.

function setDisabled
 (address inputTokenAddress, bool disabled) external restricted {
 if (!_inputTokens.contains
 (inputTokenAddress)) revert InvalidInputTokenAddress();
 _inputTokens.get
 //(inputTokenAddress).disabled = disabled; // @audit should collect fees in FarmKe
 emit DisabledUpdated(inputTokenAddress, disabled);
 }

function _collectFees(Farm storage farm) private {
 ...
 // Identify tokens which are accepted as input for buy and burn
 bool isInputToken0 = buyAndBurn.isInputToken(farm.poolKey.token0);
 bool isInputToken1 = buyAndBurn.isInputToken(farm.poolKey.token1);

 ...
 }

The impact is inconsistent fee collection and distribution, and inaccurate
protocol fee calculations

It's recommended to collect fees in the setDisabled function before disabling
the token.

[L-09] Lack of min toBuy and toBurn for
buyAndBurn

When buyAndBurn is called, it calculates the toBuy and toBurn amounts
based on the burnPercentage value. As long as one of the values is non-zero,
the operation will be processed.

21

function buyAndBurn(address inputTokenAddress) external nonReentrant {
 // Ensure processing a valid input token
 if (!_inputTokens.contains(inputTokenAddress)) {
 revert InvalidInputTokenAddress();
 }
 InputToken storage inputTokenInfo = _inputTokens.get(inputTokenAddress);

 // prevent contract accounts (bots) from calling this function
 // becomes obsolete with EIP-3074, there are other measures in
 // place to make MEV attacks inefficient (cap per swap, interval control)
 if (msg.sender != tx.origin) {
 revert InvalidCaller();
 }

 if (inputTokenInfo.paused) {
 revert InputTokenPaused();
 }

 // keep a minium gap of interval between each call
 // update stored timestamp
 if
 (block.timestamp - inputTokenInfo.lastCallTs <= inputTokenInfo.interval) {
 revert CooldownPeriodActive();
 }
 inputTokenInfo.lastCallTs = block.timestamp;

 // Get the input token amount to buy and incentive fee
 // this call will revert if there are no input tokens left in the contract
 (uint256 toBuy, uint256 toBurn, uint256 incentiveFee) = _getAmounts
 (inputTokenInfo);

>>> if (toBuy == 0 && toBurn == 0) {
 revert NoInputTokenBalance();
 }
 // ...
}

This allows griefers to donate a dust amount of the input token to the contract,
trigger buyAndBurn , and update the token's lastCallTs , causing it to wait for
the interval, even though an improper buyAndBurn was executed.

Consider adding a minimum value for toBuy and toBurn when buyAndBurn is
triggered. Also, consider setting lastCallTs to block.timestamp when a new
input token is enabled to minimize griefing when the token is enabled for the
first time.

22

function enableInputToken
 (EnableInputToken calldata params) external restricted {
 // ...

 _inputTokens.add(
 InputToken({
 id: params.id,
 totalTokensUsedForBuyAndBurn: 0,
 totalTokensBurned: 0,
 totalIncentiveFee: 0,
- lastCallTs: 0,
+ lastCallTs: block.timestamp,
 capPerSwap: params.capPerSwap,
 interval: params.interval,
 incentiveFee: params.incentiveFee,
 burnProxy: IBurnProxy(params.burnProxy),
 burnPercentage: params.burnPercentage,
 priceTwa: params.priceTwa,
 slippage: params.slippage,
 path: params.path,
 paused: params.paused,
 disabled: false
 })
);

 emit InputTokenEnabled(params.id, params);
 }

23

